Tuesday, September 28, 2021

What are the components of snowflake architecture ?

                Are you looking for an article on snowflake architecture? Are you also looking for the components of snowflake architecture? If so, then you reached the right place. In this article, we will explore database storage, Query processing, and cloud services in detail.

A) What is the Architecture of Snowflake?

               Snowflake architecture is a hybrid of a shared-nothing database and shared disk.

       1. Snowflake uses a central data repository which is similar to shared-disk architecture.

       2. Snowflake processes queries using massively parallel processing compute clusters. In this kind of architecture each node in the cluster, stores a portion of the entire data set. This is similar to shared-nothing architecture.

B) What are the components of Snowflake Architecture?

              The components of snowflake architecture are as below 

        1. Database Storage

        2. Query Processing 

        3. Cloud Services 

                 Let's understand each of these components one by one

1. Cloud  Services 

               It is the topmost layer in snowflake architecture. It consists of a collection of services that coordinates various activities across the Snowflake platform. The cloud services join various components of a snowflake in order to fulfill requests such as login or giving a response back to the user.

               Here is the list of services that are handled in this layer.

         1. Authentication 

         2. Infrastructure Management 

         3. Metadata Management 

         4. Query Parsing 

         5. Query optimization 

         6. Access Control

2. Query Processing 

               In this layer, query execution is handled. It is the most common and widely used component of the snowflake.  The queries are processed using a virtual warehouse. Each virtual warehouse is massively parallel processing compute cluster. It consists of multiple compute nodes provided by snowflake from the cloud provider.

3. Database Storage 

              It is cloud storage where optimized data is stored. What is optimized data? The optimized data is nothing but the data which is reorganized by snowflake into the compressed and columnar format.

             What are aspects handled by snowflake related to data? here is a list which is taken care of by snowflake 

         1. File Size 

         2. Structure of the data 

         3. Compression of the data 

         4. Metadata

         5. Statistics of the data

         6. Organization of the data

 The important thing here is the data stored by snowflake is not visible or accessible directly by customers. It can only be accessed using SQL query operations.

                 Learn more about snowflake here 

Tuesday, September 21, 2021

What are application of Artificial Intelligence?

           Are you looking for an article that lists currently available applications which use Artificial Intelligence? If so, then you reached the right place. In this article, we will explore the applications which leverage the benefits of Artificial Intelligence.

1) Google

          Google has a predictive search engine that predicts the next word when a user types a keyword to search on the Google page. This recommendation suggested by Google search is one of the best examples of Artificial Intelligence aka AI. It uses predictive analysis to achieve it.

2) JP Morgan chase's contact Intelligence platform

          Artificial intelligence, machine learning, and image recognition is used to implement JP Morgan chase's contact Intelligence platform to analyze legal documents. This system is very efficient compared to the manual review of each and every legal document.

3) IBM Watson 

              It is another Implementation of AI. IBM Watson technology is used by Healthcare organizations for medical diagnosis.

4) Google Eye Doctor

              The condition called diabetic retinopathy which can cause blindness can be diagnosed by using this AI-based technology named Google Eye Doctor

5) Facebook 

              It is one of the social media platforms which uses artificial Intelligence for face verification. Internally it uses machine learning and deep learning to detect facial features and tag friends.

6) Twitter

              Twitter uses Artificial Intelligence to detect hate speeches and terroristic languages in the twits.

7) Siri or Alexa

               these virtual assistance devices use Artificial intelligence for speech recognition.

8)  Tesla 

               Now a day we hear the buzzword autonomous driving or self-driving cars. Tesla is the leader in it Tesla uses computer vision, image recognization, deep learning in order to build smart cars. Which detects obstacles and drive around them without human interaction.

              Learn more about Artificial Intelligence here

Monday, September 6, 2021

Types of Artificial intelligence

         Are you looking for an article on what are types of artificial intelligence? Are you also interested in knowing what are stages of artificial intelligence are? If so then you reached the right place. In this article, we will focus on various types of artificial intelligence.

A) what is Artificial Intelligence or AI?

          The System which is capable of performing tasks that require normally human intelligence e.g decision making, object detection, complex problem solving, etc is called an Artificial Intelligence system, and capability with which it performs is called Artificial Intelligence.

B) Stages of Artificial Intelligence

           The stages of artificial intelligence are 

       1. An Artificial Narrow Intelligence (Weak AI) 

            Artificial narrow Intelligence is also called weak  AI. It is a stage of AI that involves machines that can perform specific tasks.

            e.g Alexa or Siri in iPhone

       2. Artificial General Intelligence

              Artificial General Intelligence is also known as stage AI. In this stage, the machine will possess the ability to think and make decisions.

               There is no implementation of strong AI yet.

        3. Artificial super Intelligence

               It is a stage of AI when the capability of computers will surpass human beings.

               This is still considered a hypothetical situation.

C) Types of Artificial Intelligence

            The types of Artificial Intelligence are as below-

          1. Reactive machine AI :

                   In this, machine operators solely based on the taking current situation and data 

                   e.g IBM chess machine - Deep Blue

            2. Limited memory AI 

                    In this, the machine uses post data and its memory to make informed and improved decisions.

                     e.g self-driving car - Tesla car

               3. Theory of mind AI 

                       In this, the human believes and thoughts can be comprehended by considering emotional intelligence in this type of artificial intelligence.

                 4. Self-aware AI 

                          In this, the machines will have their own consciousness and become self-aware. This type of AI does not exist yet.

           Learn more about Artificial Intelligence and data science here

Sunday, September 5, 2021

How to design landing table in the Informatica MDM ?

          Are you planning to implement Informatica MDM in your project and starting designing a landing table? Are you also interested in knowing the types of landing table designs? If so, then you have reached the right place. In this article, we will explore factors that need to consider while designing a landing table in Informatica MDM.

A) what is the landing table in Informatica MDM?

             Are landing tables are the tables where data from the source is loaded in order to process the data and sent through a stage process to cleanse and standardize it. For the stage process, the landing tables act as source and stage tables as targets.

B) Factors to be considered for landing table design

               We need to consider the following factors

While designing landing tables in MDM

             1. How many source systems are involved

             2. What is the volume from each source system

             3. Impact of development timelines

             4. Maintenance requirements

             5. Partition requirements

C) Type of landing table designs

             Based on the Information capture in the previous section, we can design landing tables in two ways

             1. One landing table for each source

             2. One landing table for multiple sources

1. One landing table for each source

             If each source is having different types of data ( e.g.one source is customer-centric and another source is Account centric), if the volume in each source is almost equal, or if we have good development and maintenance bandwidth then we can design one landing table for each source.

2. One landing table for multiple sources

             If multiple sources are having similar attributes and data types and volume in each source system is low and if we need to expertise the development time then we can design one landing table for multiple source systems. 


Learn more about MDM landing table here

What are differences between multimerge and merge API in Informatica MDM

                Are you interested in knowing what is the use of multimerge and merge APIs? Are you also would like to know the difference b...